A one-dimensional nonlocal damage-plasticity model for ductile materials
This paper presents a new 1-D non-local damage-plasticity deformation model for ductile materials. It uses the thermodynamic framework described in Houlsby and Puzrin (2000) and holds, nevertheless, some similarities with Lemaitre's (1971) approach. A 1D finite element (FE) model of a bar fixed...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2007
|
_version_ | 1797082460609052672 |
---|---|
author | Belnoue, J Nguyen, G Korsunsky, A |
author_facet | Belnoue, J Nguyen, G Korsunsky, A |
author_sort | Belnoue, J |
collection | OXFORD |
description | This paper presents a new 1-D non-local damage-plasticity deformation model for ductile materials. It uses the thermodynamic framework described in Houlsby and Puzrin (2000) and holds, nevertheless, some similarities with Lemaitre's (1971) approach. A 1D finite element (FE) model of a bar fixed at one end and loaded in tension at the other end is introduced. This simple model demonstrates how the approach can be implemented within the finite element framework, and that it is capable of capturing both the pre-peak hardening and post-peak softening (generally responsible for models instability) due to damage-induced stiffness and strength reduction characteristic of ductile materials. It is also shown that the approach has further advantages of achieving some degree of mesh independence, and of being able to capture deformation size effects. Finally, it is illustrated how the model permits the calculation of essential work of rupture (EWR), i.e. the specific energy per unit cross-sectional area that is needed to cause tensile failure of a specimen. © Springer Science+Business Media B.V. 2007. |
first_indexed | 2024-03-07T01:28:25Z |
format | Journal article |
id | oxford-uuid:92c01177-5c70-4b8a-a23a-00b9210f56ef |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T01:28:25Z |
publishDate | 2007 |
record_format | dspace |
spelling | oxford-uuid:92c01177-5c70-4b8a-a23a-00b9210f56ef2022-03-26T23:27:47ZA one-dimensional nonlocal damage-plasticity model for ductile materialsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:92c01177-5c70-4b8a-a23a-00b9210f56efEnglishSymplectic Elements at Oxford2007Belnoue, JNguyen, GKorsunsky, AThis paper presents a new 1-D non-local damage-plasticity deformation model for ductile materials. It uses the thermodynamic framework described in Houlsby and Puzrin (2000) and holds, nevertheless, some similarities with Lemaitre's (1971) approach. A 1D finite element (FE) model of a bar fixed at one end and loaded in tension at the other end is introduced. This simple model demonstrates how the approach can be implemented within the finite element framework, and that it is capable of capturing both the pre-peak hardening and post-peak softening (generally responsible for models instability) due to damage-induced stiffness and strength reduction characteristic of ductile materials. It is also shown that the approach has further advantages of achieving some degree of mesh independence, and of being able to capture deformation size effects. Finally, it is illustrated how the model permits the calculation of essential work of rupture (EWR), i.e. the specific energy per unit cross-sectional area that is needed to cause tensile failure of a specimen. © Springer Science+Business Media B.V. 2007. |
spellingShingle | Belnoue, J Nguyen, G Korsunsky, A A one-dimensional nonlocal damage-plasticity model for ductile materials |
title | A one-dimensional nonlocal damage-plasticity model for ductile materials |
title_full | A one-dimensional nonlocal damage-plasticity model for ductile materials |
title_fullStr | A one-dimensional nonlocal damage-plasticity model for ductile materials |
title_full_unstemmed | A one-dimensional nonlocal damage-plasticity model for ductile materials |
title_short | A one-dimensional nonlocal damage-plasticity model for ductile materials |
title_sort | one dimensional nonlocal damage plasticity model for ductile materials |
work_keys_str_mv | AT belnouej aonedimensionalnonlocaldamageplasticitymodelforductilematerials AT nguyeng aonedimensionalnonlocaldamageplasticitymodelforductilematerials AT korsunskya aonedimensionalnonlocaldamageplasticitymodelforductilematerials AT belnouej onedimensionalnonlocaldamageplasticitymodelforductilematerials AT nguyeng onedimensionalnonlocaldamageplasticitymodelforductilematerials AT korsunskya onedimensionalnonlocaldamageplasticitymodelforductilematerials |