EChO: Exoplanet characterisation observatory

A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO-the Exoplanet Characterisation Observatory-...

Ful tanımlama

Detaylı Bibliyografya
Asıl Yazarlar: Tinetti, G, Beaulieu, J, Henning, T, Meyer, M, Micela, G, Ribas, I, Stam, D, Swain, M, Krause, O, Ollivier, M, Pace, E, Swinyard, B, Aylward, A, van Boekel, R, Coradini, A, Encrenaz, T, Snellen, I, Zapatero-Osorio, MR, Bouwman, J, Cho, J, Foresto, d, Guillot, T, Lopez-Morales, M, Mueller-Wodarg, I, Palle, E
Materyal Türü: Journal article
Dil:English
Baskı/Yayın Bilgisi: 2012
_version_ 1826285427057754112
author Tinetti, G
Beaulieu, J
Henning, T
Meyer, M
Micela, G
Ribas, I
Stam, D
Swain, M
Krause, O
Ollivier, M
Pace, E
Swinyard, B
Aylward, A
van Boekel, R
Coradini, A
Encrenaz, T
Snellen, I
Zapatero-Osorio, MR
Bouwman, J
Cho, J
Foresto, d
Guillot, T
Lopez-Morales, M
Mueller-Wodarg, I
Palle, E
author_facet Tinetti, G
Beaulieu, J
Henning, T
Meyer, M
Micela, G
Ribas, I
Stam, D
Swain, M
Krause, O
Ollivier, M
Pace, E
Swinyard, B
Aylward, A
van Boekel, R
Coradini, A
Encrenaz, T
Snellen, I
Zapatero-Osorio, MR
Bouwman, J
Cho, J
Foresto, d
Guillot, T
Lopez-Morales, M
Mueller-Wodarg, I
Palle, E
author_sort Tinetti, G
collection OXFORD
description A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO-the Exoplanet Characterisation Observatory-is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO's configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region-from the visible to the mid-infrared-to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2,000 K, to those of a few Earth masses, with Teq ∼ 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0. 4-16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1. 5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to ∼45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4-5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework. © 2012 Springer Science+Business Media B.V.
first_indexed 2024-03-07T01:28:40Z
format Journal article
id oxford-uuid:92d412b7-0d86-417c-ad64-ad3053f58895
institution University of Oxford
language English
last_indexed 2024-03-07T01:28:40Z
publishDate 2012
record_format dspace
spelling oxford-uuid:92d412b7-0d86-417c-ad64-ad3053f588952022-03-26T23:28:23ZEChO: Exoplanet characterisation observatoryJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:92d412b7-0d86-417c-ad64-ad3053f58895EnglishSymplectic Elements at Oxford2012Tinetti, GBeaulieu, JHenning, TMeyer, MMicela, GRibas, IStam, DSwain, MKrause, OOllivier, MPace, ESwinyard, BAylward, Avan Boekel, RCoradini, AEncrenaz, TSnellen, IZapatero-Osorio, MRBouwman, JCho, JForesto, dGuillot, TLopez-Morales, MMueller-Wodarg, IPalle, EA dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO-the Exoplanet Characterisation Observatory-is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO's configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region-from the visible to the mid-infrared-to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2,000 K, to those of a few Earth masses, with Teq ∼ 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0. 4-16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1. 5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to ∼45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4-5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework. © 2012 Springer Science+Business Media B.V.
spellingShingle Tinetti, G
Beaulieu, J
Henning, T
Meyer, M
Micela, G
Ribas, I
Stam, D
Swain, M
Krause, O
Ollivier, M
Pace, E
Swinyard, B
Aylward, A
van Boekel, R
Coradini, A
Encrenaz, T
Snellen, I
Zapatero-Osorio, MR
Bouwman, J
Cho, J
Foresto, d
Guillot, T
Lopez-Morales, M
Mueller-Wodarg, I
Palle, E
EChO: Exoplanet characterisation observatory
title EChO: Exoplanet characterisation observatory
title_full EChO: Exoplanet characterisation observatory
title_fullStr EChO: Exoplanet characterisation observatory
title_full_unstemmed EChO: Exoplanet characterisation observatory
title_short EChO: Exoplanet characterisation observatory
title_sort echo exoplanet characterisation observatory
work_keys_str_mv AT tinettig echoexoplanetcharacterisationobservatory
AT beaulieuj echoexoplanetcharacterisationobservatory
AT henningt echoexoplanetcharacterisationobservatory
AT meyerm echoexoplanetcharacterisationobservatory
AT micelag echoexoplanetcharacterisationobservatory
AT ribasi echoexoplanetcharacterisationobservatory
AT stamd echoexoplanetcharacterisationobservatory
AT swainm echoexoplanetcharacterisationobservatory
AT krauseo echoexoplanetcharacterisationobservatory
AT ollivierm echoexoplanetcharacterisationobservatory
AT pacee echoexoplanetcharacterisationobservatory
AT swinyardb echoexoplanetcharacterisationobservatory
AT aylwarda echoexoplanetcharacterisationobservatory
AT vanboekelr echoexoplanetcharacterisationobservatory
AT coradinia echoexoplanetcharacterisationobservatory
AT encrenazt echoexoplanetcharacterisationobservatory
AT snelleni echoexoplanetcharacterisationobservatory
AT zapateroosoriomr echoexoplanetcharacterisationobservatory
AT bouwmanj echoexoplanetcharacterisationobservatory
AT choj echoexoplanetcharacterisationobservatory
AT forestod echoexoplanetcharacterisationobservatory
AT guillott echoexoplanetcharacterisationobservatory
AT lopezmoralesm echoexoplanetcharacterisationobservatory
AT muellerwodargi echoexoplanetcharacterisationobservatory
AT pallee echoexoplanetcharacterisationobservatory