Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale
Ti and its alloys have a high affinity for hydrogen and are typical hydride formers. Ti-hydride are brittle phases which probably cause premature failure of Ti-alloys. Here, we used atom probe tomography and electron microscopy to investigate the hydrogen distribution in a set of specimens of commer...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2018
|
Summary: | Ti and its alloys have a high affinity for hydrogen and are typical hydride formers. Ti-hydride are brittle phases which probably cause premature failure of Ti-alloys. Here, we used atom probe tomography and electron microscopy to investigate the hydrogen distribution in a set of specimens of commercially pure Ti, model and commercial Ti-alloys. Although likely partly introduced during specimen preparation with the focused-ion beam, we show formation of Ti-hydrides along α grain boundaries and α/β phase boundaries in commercial pure Ti and α+β binary model alloys. No hydrides are observed in the α phase in alloys with Al addition or quenched-in Mo supersaturation. |
---|