Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale

Ti and its alloys have a high affinity for hydrogen and are typical hydride formers. Ti-hydride are brittle phases which probably cause premature failure of Ti-alloys. Here, we used atom probe tomography and electron microscopy to investigate the hydrogen distribution in a set of specimens of commer...

Full description

Bibliographic Details
Main Authors: Chang, Y, Breen, AJ, Tarzimoghadam, Z, Kürnsteiner, P, Gardner, H, Ackerman, A, Radecka, A, Bagot, PAJ, Lu, W, Li, T, Jägle, EA, Herbig, M, Stephenson, LT, Moody, MP, Rugg, D, Dye, D, Ponge, D, Raabe, D, Gault, B
Format: Journal article
Language:English
Published: Elsevier 2018
Description
Summary:Ti and its alloys have a high affinity for hydrogen and are typical hydride formers. Ti-hydride are brittle phases which probably cause premature failure of Ti-alloys. Here, we used atom probe tomography and electron microscopy to investigate the hydrogen distribution in a set of specimens of commercially pure Ti, model and commercial Ti-alloys. Although likely partly introduced during specimen preparation with the focused-ion beam, we show formation of Ti-hydrides along α grain boundaries and α/β phase boundaries in commercial pure Ti and α+β binary model alloys. No hydrides are observed in the α phase in alloys with Al addition or quenched-in Mo supersaturation.