Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Quality control-driven framewo...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Quality control-driven framework for reliable automated segmentation of cardiac magnetic resonance LGE and VNE images

Quality control-driven framework for reliable automated segmentation of cardiac magnetic resonance LGE and VNE images

Bibliographic Details
Main Authors: Gonzales, RA, Ibáñez, DH, Hann, E, Popescu, IA, Burrage, MK, Lee, YP, Altun, İ, Weintraub, WS, Kwong, RY, Kramer, CM, Neubauer, S, Ferreira, VM, Zhang, Q, Piechnik, SK
Format: Conference item
Language:English
Published: Clinically-oriented and Responsible AI for Medical Data Analysis (Care-AI) 2023
  • Holdings
  • Description
  • Similar Items
  • Staff View

Similar Items

  • Quality control-driven deep ensemble for accountable automated segmentation of cardiac magnetic resonance LGE and VNE images
    by: Gonzales, RA, et al.
    Published: (2023)
  • Quality control-driven deep ensemble for accountable automated segmentation of cardiac magnetic resonance LGE and VNE images
    by: Ricardo A. Gonzales, et al.
    Published: (2023-09-01)
  • Quality control-driven artificial intelligence for reliable automatic segmentation of LGE images in clinical practice
    by: Gonzales, RA, et al.
    Published: (2022)
  • Deep learning for automated insertion point annotation of CMR late gadolinium enhancement and virtual native enhancement images
    by: Gonzales, RA, et al.
    Published: (2023)
  • Development of deep learning virtual native enhancement for gadolinium-free myocardial infarction and viability assessment
    by: Zhang, Q, et al.
    Published: (2022)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs