Continuous-variable quantum tomography of high-amplitude states

Quantum state tomography is an essential component of modern quantum technology. In application to continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography methods typically reconstruct the state in discrete bases, and are hence limited to states with r...

Full description

Bibliographic Details
Main Authors: Fedotova, E, Kuznetsov, N, Tiunov, E, Ulanov, AE, Lvovsky, A
Format: Journal article
Language:English
Published: American Physical Society 2023
Description
Summary:Quantum state tomography is an essential component of modern quantum technology. In application to continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography methods typically reconstruct the state in discrete bases, and are hence limited to states with relatively low amplitudes and energies. Here, we overcome this limitation by utilizing a feed-forward neural network to obtain the density matrix directly in the continuous position basis. An important benefit of our approach is the ability to choose specific regions in the phase space for detailed reconstruction. This results in a relatively slow scaling of the amount of resources required for the reconstruction with the state amplitude, and hence allows us to dramatically increase the range of amplitudes accessible with our method.