The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription.

Little is known of the molecular mechanisms underlying the differentiation of the melanocyte from the melanoblast or the progression from the melanocyte to a malignant melanoma. Since the adenovirus E1A products have proved a useful tool for understanding control of differentiation in other systems,...

Full description

Bibliographic Details
Main Authors: Yavuzer, U, Keenan, E, Lowings, P, Vachtenheim, J, Currie, G, Goding, C
Format: Journal article
Language:English
Published: 1995
Description
Summary:Little is known of the molecular mechanisms underlying the differentiation of the melanocyte from the melanoblast or the progression from the melanocyte to a malignant melanoma. Since the adenovirus E1A products have proved a useful tool for understanding control of differentiation in other systems, we explored the possibility of using E1A as a probe for factors controlling melanocyte-specific gene expression and differentiation. The results obtained show that the adenovirus E1A 13S, but not the 12S, product can transform the highly pigmented and TPA-dependent melanocyte cell line melan-a. Transformation is characterised by a morphological change, loss of TPA-dependence, the ability to grow in soft agar and strikingly, loss of pigmentation which correlates with loss of expression of the melanocyte-specific TRP-1 and tyrosinase genes. Cotransfection assays demonstrated that repression of TRP-1 by E1A correlated with E1A binding to p105Rb and p300, with the target in the TRP-1 promoter being the M-box, and 11 bp basic-Helix-loop-Helix (bHLH) factor-binding motif conserved between melanocyte-specific promoters. Consistent with the M-box acting as a target for E1a-mediated transcription repression, we also show that the basic-helix-loop-helix-leucine zipper (bHLH-LZ) protein (Mi) encoded by the microphthalmia gene (mi), which is required for pigment cell differentiation, is a positive acting transcription factor which can interact with the retinoblastoma product in vitro and activate the TRP-1 promoter. Moreover, expression of the mi gene was reduced around 50-fold in the non-pigmented E1a-transformed melan-a cells compared to the nontransformed melan-a cell line, with ectopic expression of Mi able to prevent repression of the tyrosinase and TRP-1 promoters in the presence of E1A. Mi therefore appears to play a crucial role in melanocyte-specific gene expression. The parallels between repression of myogenesis and muscle cell bHLH factors, and Mi and melanocyte differentiation are discussed.