Signatures of paracrystallinity in amorphous silicon from machine-learning-driven molecular dynamics
The structure of amorphous silicon has been studied for decades. The two main theories are based on a continuous random network and on a ‘paracrystalline’ model, respectively—the latter defined as showing localized structural order resembling the crystalline state whilst retaining an overall amorpho...
Hlavní autoři: | Rosset, LAM, Drabold, DA, Deringer, VL |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Nature Research
2025
|
Podobné jednotky
-
Understanding defects in amorphous silicon with million-atom simulations and machine learning
Autor: Morrow, JD, a další
Vydáno: (2024) -
Quantifying chemical structure and machine-learned atomic energies in amorphous and liquid silicon
Autor: Bernstein, N, a další
Vydáno: (2019) -
Machine learning driven simulated deposition of carbon films: from low-density to diamondlike amorphous carbon
Autor: Caro, MA, a další
Vydáno: (2020) -
Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning
Autor: Erhard, LC, a další
Vydáno: (2024) -
Origins of structural and electronic transitions in disordered silicon
Autor: Deringer, VL, a další
Vydáno: (2021)