Approximating continuous convolutions for deep network compression
We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with few...
Hoofdauteurs: | Costain, TW, Prisacariu, VA |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
British Machine Vision Association
2022
|
Gelijkaardige items
-
Approximating continuous convolutions for deep network compression
door: Costain, TW, et al.
Gepubliceerd in: (2022) -
Towards generalising neural implicit representations
door: Costain, TW, et al.
Gepubliceerd in: (2021) -
Correspondence networks with adaptive neighbourhood consensus
door: Li, S, et al.
Gepubliceerd in: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
door: Gennari do Nascimento, M, et al.
Gepubliceerd in: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
door: Gennari do Nascimento, M, et al.
Gepubliceerd in: (2020)