Approximating continuous convolutions for deep network compression
We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with few...
Hlavní autoři: | Costain, TW, Prisacariu, VA |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
British Machine Vision Association
2022
|
Podobné jednotky
-
Approximating continuous convolutions for deep network compression
Autor: Costain, TW, a další
Vydáno: (2022) -
Towards generalising neural implicit representations
Autor: Costain, TW, a další
Vydáno: (2021) -
Correspondence networks with adaptive neighbourhood consensus
Autor: Li, S, a další
Vydáno: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
Autor: Gennari do Nascimento, M, a další
Vydáno: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
Autor: Gennari do Nascimento, M, a další
Vydáno: (2020)