Approximating continuous convolutions for deep network compression
We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with few...
Egile Nagusiak: | Costain, TW, Prisacariu, VA |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
British Machine Vision Association
2022
|
Antzeko izenburuak
-
Approximating continuous convolutions for deep network compression
nork: Costain, TW, et al.
Argitaratua: (2022) -
Towards generalising neural implicit representations
nork: Costain, TW, et al.
Argitaratua: (2021) -
Correspondence networks with adaptive neighbourhood consensus
nork: Li, S, et al.
Argitaratua: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
nork: Gennari do Nascimento, M, et al.
Argitaratua: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
nork: Gennari do Nascimento, M, et al.
Argitaratua: (2020)