Approximating continuous convolutions for deep network compression
We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with few...
Main Authors: | Costain, TW, Prisacariu, VA |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado: |
British Machine Vision Association
2022
|
Títulos similares
-
Approximating continuous convolutions for deep network compression
por: Costain, TW, et al.
Publicado: (2022) -
Towards generalising neural implicit representations
por: Costain, TW, et al.
Publicado: (2021) -
Correspondence networks with adaptive neighbourhood consensus
por: Li, S, et al.
Publicado: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
por: Gennari do Nascimento, M, et al.
Publicado: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
por: Gennari do Nascimento, M, et al.
Publicado: (2020)