Approximating continuous convolutions for deep network compression
We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with few...
主要な著者: | Costain, TW, Prisacariu, VA |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
British Machine Vision Association
2022
|
類似資料
-
Approximating continuous convolutions for deep network compression
著者:: Costain, TW, 等
出版事項: (2022) -
Towards generalising neural implicit representations
著者:: Costain, TW, 等
出版事項: (2021) -
Correspondence networks with adaptive neighbourhood consensus
著者:: Li, S, 等
出版事項: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
著者:: Gennari do Nascimento, M, 等
出版事項: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
著者:: Gennari do Nascimento, M, 等
出版事項: (2020)