Approximating continuous convolutions for deep network compression
We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with few...
Principais autores: | Costain, TW, Prisacariu, VA |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
British Machine Vision Association
2022
|
Registros relacionados
-
Approximating continuous convolutions for deep network compression
por: Costain, TW, et al.
Publicado em: (2022) -
Towards generalising neural implicit representations
por: Costain, TW, et al.
Publicado em: (2021) -
Correspondence networks with adaptive neighbourhood consensus
por: Li, S, et al.
Publicado em: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
por: Gennari do Nascimento, M, et al.
Publicado em: (2020) -
Finding non-uniform quantization schemes using multi-task Gaussian processes
por: Gennari do Nascimento, M, et al.
Publicado em: (2020)