A Drosophila computational brain model reveals sensorimotor processing

The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of...

Full description

Bibliographic Details
Main Authors: Shiu, PK, Sterne, GR, Spiller, N, Franconville, R, Sandoval, A, Zhou, J, Simha, N, Kang, CH, Yu, S, Kim, JS, Dorkenwald, S, Matsliah, A, Schlegel, P, McKellar, CE, Sterling, A, Costa, M, Eichler, K, Bates, AS, Eckstein, N, Funke, J, Jefferis, GSXE, Murthy, M, Bidaye, SS
Format: Journal article
Language:English
Published: Nature Research 2024
_version_ 1826314728449769472
author Shiu, PK
Sterne, GR
Spiller, N
Franconville, R
Sandoval, A
Zhou, J
Simha, N
Kang, CH
Yu, S
Kim, JS
Dorkenwald, S
Matsliah, A
Schlegel, P
Yu, S
McKellar, CE
Sterling, A
Costa, M
Eichler, K
Bates, AS
Eckstein, N
Funke, J
Jefferis, GSXE
Murthy, M
Bidaye, SS
author_facet Shiu, PK
Sterne, GR
Spiller, N
Franconville, R
Sandoval, A
Zhou, J
Simha, N
Kang, CH
Yu, S
Kim, JS
Dorkenwald, S
Matsliah, A
Schlegel, P
Yu, S
McKellar, CE
Sterling, A
Costa, M
Eichler, K
Bates, AS
Eckstein, N
Funke, J
Jefferis, GSXE
Murthy, M
Bidaye, SS
author_sort Shiu, PK
collection OXFORD
description The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5—a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6–10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
first_indexed 2024-12-09T03:09:57Z
format Journal article
id oxford-uuid:9422e222-dc23-4182-b183-19b92505a7db
institution University of Oxford
language English
last_indexed 2024-12-09T03:09:57Z
publishDate 2024
publisher Nature Research
record_format dspace
spelling oxford-uuid:9422e222-dc23-4182-b183-19b92505a7db2024-10-03T20:09:54ZA Drosophila computational brain model reveals sensorimotor processingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:9422e222-dc23-4182-b183-19b92505a7dbEnglishJisc Publications RouterNature Research2024Shiu, PKSterne, GRSpiller, NFranconville, RSandoval, AZhou, JSimha, NKang, CHYu, SKim, JSDorkenwald, SMatsliah, ASchlegel, PYu, SMcKellar, CESterling, ACosta, MEichler, KBates, ASEckstein, NFunke, JJefferis, GSXEMurthy, MBidaye, SSThe recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5—a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6–10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
spellingShingle Shiu, PK
Sterne, GR
Spiller, N
Franconville, R
Sandoval, A
Zhou, J
Simha, N
Kang, CH
Yu, S
Kim, JS
Dorkenwald, S
Matsliah, A
Schlegel, P
Yu, S
McKellar, CE
Sterling, A
Costa, M
Eichler, K
Bates, AS
Eckstein, N
Funke, J
Jefferis, GSXE
Murthy, M
Bidaye, SS
A Drosophila computational brain model reveals sensorimotor processing
title A Drosophila computational brain model reveals sensorimotor processing
title_full A Drosophila computational brain model reveals sensorimotor processing
title_fullStr A Drosophila computational brain model reveals sensorimotor processing
title_full_unstemmed A Drosophila computational brain model reveals sensorimotor processing
title_short A Drosophila computational brain model reveals sensorimotor processing
title_sort drosophila computational brain model reveals sensorimotor processing
work_keys_str_mv AT shiupk adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT sternegr adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT spillern adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT franconviller adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT sandovala adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT zhouj adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT simhan adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT kangch adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT yus adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT kimjs adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT dorkenwalds adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT matsliaha adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT schlegelp adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT yus adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT mckellarce adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT sterlinga adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT costam adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT eichlerk adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT batesas adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT ecksteinn adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT funkej adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT jefferisgsxe adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT murthym adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT bidayess adrosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT shiupk drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT sternegr drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT spillern drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT franconviller drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT sandovala drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT zhouj drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT simhan drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT kangch drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT yus drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT kimjs drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT dorkenwalds drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT matsliaha drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT schlegelp drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT yus drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT mckellarce drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT sterlinga drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT costam drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT eichlerk drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT batesas drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT ecksteinn drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT funkej drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT jefferisgsxe drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT murthym drosophilacomputationalbrainmodelrevealssensorimotorprocessing
AT bidayess drosophilacomputationalbrainmodelrevealssensorimotorprocessing