A Drosophila computational brain model reveals sensorimotor processing
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Nature Research
2024
|
_version_ | 1826314728449769472 |
---|---|
author | Shiu, PK Sterne, GR Spiller, N Franconville, R Sandoval, A Zhou, J Simha, N Kang, CH Yu, S Kim, JS Dorkenwald, S Matsliah, A Schlegel, P Yu, S McKellar, CE Sterling, A Costa, M Eichler, K Bates, AS Eckstein, N Funke, J Jefferis, GSXE Murthy, M Bidaye, SS |
author_facet | Shiu, PK Sterne, GR Spiller, N Franconville, R Sandoval, A Zhou, J Simha, N Kang, CH Yu, S Kim, JS Dorkenwald, S Matsliah, A Schlegel, P Yu, S McKellar, CE Sterling, A Costa, M Eichler, K Bates, AS Eckstein, N Funke, J Jefferis, GSXE Murthy, M Bidaye, SS |
author_sort | Shiu, PK |
collection | OXFORD |
description | The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5—a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6–10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations. |
first_indexed | 2024-12-09T03:09:57Z |
format | Journal article |
id | oxford-uuid:9422e222-dc23-4182-b183-19b92505a7db |
institution | University of Oxford |
language | English |
last_indexed | 2024-12-09T03:09:57Z |
publishDate | 2024 |
publisher | Nature Research |
record_format | dspace |
spelling | oxford-uuid:9422e222-dc23-4182-b183-19b92505a7db2024-10-03T20:09:54ZA Drosophila computational brain model reveals sensorimotor processingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:9422e222-dc23-4182-b183-19b92505a7dbEnglishJisc Publications RouterNature Research2024Shiu, PKSterne, GRSpiller, NFranconville, RSandoval, AZhou, JSimha, NKang, CHYu, SKim, JSDorkenwald, SMatsliah, ASchlegel, PYu, SMcKellar, CESterling, ACosta, MEichler, KBates, ASEckstein, NFunke, JJefferis, GSXEMurthy, MBidaye, SSThe recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5—a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6–10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations. |
spellingShingle | Shiu, PK Sterne, GR Spiller, N Franconville, R Sandoval, A Zhou, J Simha, N Kang, CH Yu, S Kim, JS Dorkenwald, S Matsliah, A Schlegel, P Yu, S McKellar, CE Sterling, A Costa, M Eichler, K Bates, AS Eckstein, N Funke, J Jefferis, GSXE Murthy, M Bidaye, SS A Drosophila computational brain model reveals sensorimotor processing |
title | A Drosophila computational brain model reveals sensorimotor processing |
title_full | A Drosophila computational brain model reveals sensorimotor processing |
title_fullStr | A Drosophila computational brain model reveals sensorimotor processing |
title_full_unstemmed | A Drosophila computational brain model reveals sensorimotor processing |
title_short | A Drosophila computational brain model reveals sensorimotor processing |
title_sort | drosophila computational brain model reveals sensorimotor processing |
work_keys_str_mv | AT shiupk adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT sternegr adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT spillern adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT franconviller adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT sandovala adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT zhouj adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT simhan adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT kangch adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT yus adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT kimjs adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT dorkenwalds adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT matsliaha adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT schlegelp adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT yus adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT mckellarce adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT sterlinga adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT costam adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT eichlerk adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT batesas adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT ecksteinn adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT funkej adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT jefferisgsxe adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT murthym adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT bidayess adrosophilacomputationalbrainmodelrevealssensorimotorprocessing AT shiupk drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT sternegr drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT spillern drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT franconviller drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT sandovala drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT zhouj drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT simhan drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT kangch drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT yus drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT kimjs drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT dorkenwalds drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT matsliaha drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT schlegelp drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT yus drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT mckellarce drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT sterlinga drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT costam drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT eichlerk drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT batesas drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT ecksteinn drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT funkej drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT jefferisgsxe drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT murthym drosophilacomputationalbrainmodelrevealssensorimotorprocessing AT bidayess drosophilacomputationalbrainmodelrevealssensorimotorprocessing |