Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. I...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2013
|
_version_ | 1826285837643415552 |
---|---|
author | Tong, M Duggan, G Liu, J Xie, Y Dodge, M Aucott, L Dong, H Davidchack, R Dantzig, J Barrera, O Cocks, A Kitaguchi, H Lozano-Perez, S Zhao, C Richardson, I Kidess, A Kleijn, C Wen, S Barnett, R Browne, D |
author_facet | Tong, M Duggan, G Liu, J Xie, Y Dodge, M Aucott, L Dong, H Davidchack, R Dantzig, J Barrera, O Cocks, A Kitaguchi, H Lozano-Perez, S Zhao, C Richardson, I Kidess, A Kleijn, C Wen, S Barnett, R Browne, D |
author_sort | Tong, M |
collection | OXFORD |
description | Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented. © 2012 TMS. |
first_indexed | 2024-03-07T01:34:49Z |
format | Journal article |
id | oxford-uuid:94c7fa6c-baa4-49fd-b1b9-a28be0a82cb0 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T01:34:49Z |
publishDate | 2013 |
record_format | dspace |
spelling | oxford-uuid:94c7fa6c-baa4-49fd-b1b9-a28be0a82cb02022-03-26T23:41:56ZMultiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and ValidationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:94c7fa6c-baa4-49fd-b1b9-a28be0a82cb0EnglishSymplectic Elements at Oxford2013Tong, MDuggan, GLiu, JXie, YDodge, MAucott, LDong, HDavidchack, RDantzig, JBarrera, OCocks, AKitaguchi, HLozano-Perez, SZhao, CRichardson, IKidess, AKleijn, CWen, SBarnett, RBrowne, DVarious physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented. © 2012 TMS. |
spellingShingle | Tong, M Duggan, G Liu, J Xie, Y Dodge, M Aucott, L Dong, H Davidchack, R Dantzig, J Barrera, O Cocks, A Kitaguchi, H Lozano-Perez, S Zhao, C Richardson, I Kidess, A Kleijn, C Wen, S Barnett, R Browne, D Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation |
title | Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation |
title_full | Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation |
title_fullStr | Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation |
title_full_unstemmed | Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation |
title_short | Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation |
title_sort | multiscale multiphysics numerical modeling of fusion welding with experimental characterization and validation |
work_keys_str_mv | AT tongm multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT duggang multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT liuj multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT xiey multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT dodgem multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT aucottl multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT dongh multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT davidchackr multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT dantzigj multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT barrerao multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT cocksa multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT kitaguchih multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT lozanoperezs multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT zhaoc multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT richardsoni multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT kidessa multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT kleijnc multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT wens multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT barnettr multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation AT browned multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation |