Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation

Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. I...

Full description

Bibliographic Details
Main Authors: Tong, M, Duggan, G, Liu, J, Xie, Y, Dodge, M, Aucott, L, Dong, H, Davidchack, R, Dantzig, J, Barrera, O, Cocks, A, Kitaguchi, H, Lozano-Perez, S, Zhao, C, Richardson, I, Kidess, A, Kleijn, C, Wen, S, Barnett, R, Browne, D
Format: Journal article
Language:English
Published: 2013
_version_ 1826285837643415552
author Tong, M
Duggan, G
Liu, J
Xie, Y
Dodge, M
Aucott, L
Dong, H
Davidchack, R
Dantzig, J
Barrera, O
Cocks, A
Kitaguchi, H
Lozano-Perez, S
Zhao, C
Richardson, I
Kidess, A
Kleijn, C
Wen, S
Barnett, R
Browne, D
author_facet Tong, M
Duggan, G
Liu, J
Xie, Y
Dodge, M
Aucott, L
Dong, H
Davidchack, R
Dantzig, J
Barrera, O
Cocks, A
Kitaguchi, H
Lozano-Perez, S
Zhao, C
Richardson, I
Kidess, A
Kleijn, C
Wen, S
Barnett, R
Browne, D
author_sort Tong, M
collection OXFORD
description Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented. © 2012 TMS.
first_indexed 2024-03-07T01:34:49Z
format Journal article
id oxford-uuid:94c7fa6c-baa4-49fd-b1b9-a28be0a82cb0
institution University of Oxford
language English
last_indexed 2024-03-07T01:34:49Z
publishDate 2013
record_format dspace
spelling oxford-uuid:94c7fa6c-baa4-49fd-b1b9-a28be0a82cb02022-03-26T23:41:56ZMultiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and ValidationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:94c7fa6c-baa4-49fd-b1b9-a28be0a82cb0EnglishSymplectic Elements at Oxford2013Tong, MDuggan, GLiu, JXie, YDodge, MAucott, LDong, HDavidchack, RDantzig, JBarrera, OCocks, AKitaguchi, HLozano-Perez, SZhao, CRichardson, IKidess, AKleijn, CWen, SBarnett, RBrowne, DVarious physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented. © 2012 TMS.
spellingShingle Tong, M
Duggan, G
Liu, J
Xie, Y
Dodge, M
Aucott, L
Dong, H
Davidchack, R
Dantzig, J
Barrera, O
Cocks, A
Kitaguchi, H
Lozano-Perez, S
Zhao, C
Richardson, I
Kidess, A
Kleijn, C
Wen, S
Barnett, R
Browne, D
Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
title Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
title_full Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
title_fullStr Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
title_full_unstemmed Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
title_short Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation
title_sort multiscale multiphysics numerical modeling of fusion welding with experimental characterization and validation
work_keys_str_mv AT tongm multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT duggang multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT liuj multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT xiey multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT dodgem multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT aucottl multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT dongh multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT davidchackr multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT dantzigj multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT barrerao multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT cocksa multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT kitaguchih multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT lozanoperezs multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT zhaoc multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT richardsoni multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT kidessa multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT kleijnc multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT wens multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT barnettr multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation
AT browned multiscalemultiphysicsnumericalmodelingoffusionweldingwithexperimentalcharacterizationandvalidation