Controlling oxidative addition and reductive elimination at tin(I) via hemi-lability
We report on the synthesis of a distannyne supported by a pincer ligand bearing pendant amine donors that is capable of reversibly activating E-H bonds at one or both of the tin centres through dissociation of the hemi-labile N-Sn donor/acceptor interactions. This chemistry can be exploited to seque...
Main Authors: | , , , , , , |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
Wiley
2021
|
Summary: | We report on the synthesis of a distannyne supported by a pincer ligand bearing pendant amine donors that is capable of reversibly activating E-H bonds at one or both of the tin centres through dissociation of the hemi-labile N-Sn donor/acceptor interactions. This chemistry can be exploited to sequentially (and reversibly) assemble mixed-valence chains of tin atoms of the type ArSn{Sn(Ar)H} n SnAr ( n = 1, 2). The experimentally observed (decreasing) propensity towards chain growth with increasing chain length can be rationalized both thermodynamically and kinetically by the electron-withdrawing properties of the -Sn(Ar)H- backbone units generated via oxidative addition. |
---|