Enhanced elastic stability of a topologically disordered crystalline metal–organic framework

By virtue of their open network structures and low densities, metal–organic frameworks (MOFs) are soft materials that exhibit elastic instabilities at low applied stresses. The conventional strategy for improving elastic stability is to increase the connectivity of the underlying MOF network, which...

Full description

Bibliographic Details
Main Authors: Meekel, EG, Partridge, P, Paraoan, RAI, Levinsky, JJB, Slater, B, Hobday, CL, Goodwin, AL
Format: Journal article
Language:English
Published: Springer Nature 2024
Description
Summary:By virtue of their open network structures and low densities, metal–organic frameworks (MOFs) are soft materials that exhibit elastic instabilities at low applied stresses. The conventional strategy for improving elastic stability is to increase the connectivity of the underlying MOF network, which necessarily increases the material density and reduces the porosity. Here we demonstrate an alternative paradigm, whereby elastic stability is enhanced in a MOF with an aperiodic network topology. We use a combination of variable-pressure single-crystal X-ray diffraction measurements and coarse-grained lattice-dynamical calculations to interrogate the high-pressure behaviour of the topologically aperiodic system TRUMOF-1, which we compare against that of its ordered congener MOF-5. We show that the topology of the former quenches the elastic instability responsible for pressure-induced framework collapse in the latter, much as irregularity in the shapes and sizes of stones acts to prevent cooperative mechanical failure in drystone walls. Our results establish aperiodicity as a counter-intuitive design motif in engineering the mechanical properties of framework structures that is relevant to MOFs and larger-scale architectures alike.