Comparing arithmetic intersection formulas for denominators of Igusa class polynomials
Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for CM(K).G_1 under strong assumptions on the ramification in K. Yang later proved this conjecture under slightly stronger assumptions on the...
Glavni autori: | Anderson, J, Balakrishnan, J, Lauter, K, Park, J, Viray, B |
---|---|
Format: | Journal article |
Izdano: |
2012
|
Slični predmeti
-
Igusa-Todorov function on path rings
od: Gustavo Mata
Izdano: (2020-10-01) -
Holomorphic anomaly equations and the Igusa cusp form conjecture
od: Oberdieck, Georg, i dr.
Izdano: (2021) -
IGUSA’S CONJECTURE FOR EXPONENTIAL SUMS: OPTIMAL ESTIMATES FOR NONRATIONAL SINGULARITIES
od: RAF CLUCKERS, i dr.
Izdano: (2019-01-01) -
Deformations of Weyl's Denominator Formula
od: Angêle Hamel, i dr.
Izdano: (2014-01-01) -
Natural boundaries for Euler products of Igusa zeta functions of elliptic curves
od: du Sautoy, M
Izdano: (2018)