The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure

Microscopic features (that is, microstructure) of axons affect neural circuit activity through characteristics such as conduction speed. To what extent axonal microstructure in white matter relates to functional connectivity (synchrony) between brain regions is largely unknown. Using MRI data in 11,...

Olles dieđut

Bibliográfalaš dieđut
Váldodahkkit: Mollink, J, Smith, S, Elliott, L, Kleinnijenhuis, M, Hiemstra, M, Alfaro-Almagro, F, Marchini, J, Van Cappellen Van Walsum, A, Jbabdi, S, Miller, K
Materiálatiipa: Journal article
Giella:English
Almmustuhtton: Springer Nature 2019
_version_ 1826286117484232704
author Mollink, J
Smith, S
Elliott, L
Kleinnijenhuis, M
Hiemstra, M
Alfaro-Almagro, F
Marchini, J
Van Cappellen Van Walsum, A
Jbabdi, S
Miller, K
author_facet Mollink, J
Smith, S
Elliott, L
Kleinnijenhuis, M
Hiemstra, M
Alfaro-Almagro, F
Marchini, J
Van Cappellen Van Walsum, A
Jbabdi, S
Miller, K
author_sort Mollink, J
collection OXFORD
description Microscopic features (that is, microstructure) of axons affect neural circuit activity through characteristics such as conduction speed. To what extent axonal microstructure in white matter relates to functional connectivity (synchrony) between brain regions is largely unknown. Using MRI data in 11,354 subjects, we constructed multivariate models that predict functional connectivity of pairs of brain regions from the microstructural signature of white matter pathways that connect them. Microstructure-derived models provided predictions of functional connectivity that explained 3.5% of cross-subject variance on average (ranging from 1-13%, or r = 0.1-0.36) and reached statistical significance in 90% of the brain regions considered. The microstructure-function relationships were associated with genetic variants, co-located with genes DAAM1 and LPAR1, that have previously been linked to neural development. Our results demonstrate that variation in white matter microstructure predicts a fraction of functional connectivity across individuals, and that this relationship is underpinned by genetic variability in certain brain areas.
first_indexed 2024-03-07T01:39:00Z
format Journal article
id oxford-uuid:962e99b7-8fe0-4353-aa93-eee020ce55cd
institution University of Oxford
language English
last_indexed 2024-03-07T01:39:00Z
publishDate 2019
publisher Springer Nature
record_format dspace
spelling oxford-uuid:962e99b7-8fe0-4353-aa93-eee020ce55cd2022-03-26T23:51:16ZThe spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructureJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:962e99b7-8fe0-4353-aa93-eee020ce55cdEnglishSymplectic Elements at OxfordSpringer Nature2019Mollink, JSmith, SElliott, LKleinnijenhuis, MHiemstra, MAlfaro-Almagro, FMarchini, J Van Cappellen Van Walsum, AJbabdi, SMiller, KMicroscopic features (that is, microstructure) of axons affect neural circuit activity through characteristics such as conduction speed. To what extent axonal microstructure in white matter relates to functional connectivity (synchrony) between brain regions is largely unknown. Using MRI data in 11,354 subjects, we constructed multivariate models that predict functional connectivity of pairs of brain regions from the microstructural signature of white matter pathways that connect them. Microstructure-derived models provided predictions of functional connectivity that explained 3.5% of cross-subject variance on average (ranging from 1-13%, or r = 0.1-0.36) and reached statistical significance in 90% of the brain regions considered. The microstructure-function relationships were associated with genetic variants, co-located with genes DAAM1 and LPAR1, that have previously been linked to neural development. Our results demonstrate that variation in white matter microstructure predicts a fraction of functional connectivity across individuals, and that this relationship is underpinned by genetic variability in certain brain areas.
spellingShingle Mollink, J
Smith, S
Elliott, L
Kleinnijenhuis, M
Hiemstra, M
Alfaro-Almagro, F
Marchini, J
Van Cappellen Van Walsum, A
Jbabdi, S
Miller, K
The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
title The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
title_full The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
title_fullStr The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
title_full_unstemmed The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
title_short The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
title_sort spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure
work_keys_str_mv AT mollinkj thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT smiths thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT elliottl thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT kleinnijenhuism thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT hiemstram thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT alfaroalmagrof thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT marchinij thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT vancappellenvanwalsuma thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT jbabdis thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT millerk thespatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT mollinkj spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT smiths spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT elliottl spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT kleinnijenhuism spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT hiemstram spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT alfaroalmagrof spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT marchinij spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT vancappellenvanwalsuma spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT jbabdis spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure
AT millerk spatialcorrespondenceandgeneticinfluenceofinterhemisphericconnectivitywithwhitemattermicrostructure