Fundamental physics from galaxies

<p>Galactic-scale tests have proven to be powerful tools in constraining fundamental physics in previously under-explored regions of parameter space. In this thesis we use astrophysical systems to test some of the fundamental principles governing our current theories of the Universe, through t...

Full description

Bibliographic Details
Main Author: Bartlett, DJ
Other Authors: Ferreira, P
Format: Thesis
Language:English
Published: 2022
Subjects:
_version_ 1826308271117434880
author Bartlett, DJ
author2 Ferreira, P
author_facet Ferreira, P
Bartlett, DJ
author_sort Bartlett, DJ
collection OXFORD
description <p>Galactic-scale tests have proven to be powerful tools in constraining fundamental physics in previously under-explored regions of parameter space. In this thesis we use astrophysical systems to test some of the fundamental principles governing our current theories of the Universe, through the development of source-by-source, Monte Carlo-based forward models.</p> <p>We consider modifications to the propagation of light by one of three effects: quantum gravity (QG), a non-zero photon mass and a violation of the Weak Equivalence Principle (WEP). We use spectral lag data of Gamma Ray Bursts from the BATSE satellite to constrain the photon mass to be $m_\gamma < 4.0 \times 10^{-5} \, h \, {\rm eV}/c^2$ and the QG length scale to be $\ell_{\rm QG} < 5.3 \times 10^{-18} \, h \, {\rm \, GeV^{-1}}$ at 95\% confidence, WEP to $\Delta \gamma < 2.1 \times 10^{-15}$ at $1 \sigma$ confidence between photon energies of $25 {\rm \, keV}$ and $325 {\rm \, keV}$, and we demonstrate that these constraints are robust to how one models other contributions to the signal.</p> <p>We investigate Galileon modified gravity theories by studying the offsets between the centre of a galaxy and its host supermassive black hole (BH). We constrain the Galileon coupling to be $\Delta G / G_{\rm N} < 0.16$ at $1\sigma$ confidence for Galileons with crossover scale $r_{\rm C} \gtrsim H_0^{-1}$. Inspired by the aforementioned test of modified gravity, we study spatially offset BHs in the Horizon-AGN simulation and compare these to observations, finding i) the fraction of spatially offset BHs increases with cosmic time, ii) BHs live on prograde orbits in the plane of the galaxy with an orbital radius that decays with time but stalls near $z=0$, and iii) the magnitudes of offsets from the galaxy centres are substantially larger in the simulation than in observations.</p> <p>By cross-correlating dark matter density fields inferred from the spatial distribution of galaxies with gamma ray data from the \textit{Fermi} Large Area Telescope, marginalising over uncertainties in this reconstruction, small-scale structure and parameters describing astrophysical contributions to the observed gamma ray sky, we place constraints on the dark matter annihilation cross-sections and decay rates. We rule out the thermal relic cross-section or $s$-wave annihilation for all $m_\chi \lesssim 7 {\rm \, GeV}/c^2$ at 95\% confidence if the annihilation produces $Z$ bosons, gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma ray sky with the same spatial distribution as dark matter decay at $3.3\sigma$. Although this could be due to dark matter decay via these channels with a decay rate $\Gamma \approx 3 \times 10^{-28} {\rm \, s^{-1}}$, we find that a power-law spectrum of index $p=-2.75^{+0.71}_{-0.46}$ is preferred by the data.</p> <p>Finally, we outline a framework for assessing the reliability of the methods used in this thesis by constructing and testing more advanced models using cosmological hydrodynamical simulations. As a case study, we use the Horizon-AGN simulation to investigate warping of stellar disks and offsets between gas and stars within galaxies, which are powerful probes of screened fifth-forces.</p>
first_indexed 2024-03-07T07:17:04Z
format Thesis
id oxford-uuid:969ac360-68f7-4514-843c-bcd6580119c2
institution University of Oxford
language English
last_indexed 2024-03-07T07:17:04Z
publishDate 2022
record_format dspace
spelling oxford-uuid:969ac360-68f7-4514-843c-bcd6580119c22022-08-18T09:12:24ZFundamental physics from galaxiesThesishttp://purl.org/coar/resource_type/c_db06uuid:969ac360-68f7-4514-843c-bcd6580119c2CosmologyAstrophysicsEnglishHyrax Deposit2022Bartlett, DJFerreira, PDesmond, HMiller, LPeacock, JJasche, JLavaux, GKostic, ABergsdal, D<p>Galactic-scale tests have proven to be powerful tools in constraining fundamental physics in previously under-explored regions of parameter space. In this thesis we use astrophysical systems to test some of the fundamental principles governing our current theories of the Universe, through the development of source-by-source, Monte Carlo-based forward models.</p> <p>We consider modifications to the propagation of light by one of three effects: quantum gravity (QG), a non-zero photon mass and a violation of the Weak Equivalence Principle (WEP). We use spectral lag data of Gamma Ray Bursts from the BATSE satellite to constrain the photon mass to be $m_\gamma < 4.0 \times 10^{-5} \, h \, {\rm eV}/c^2$ and the QG length scale to be $\ell_{\rm QG} < 5.3 \times 10^{-18} \, h \, {\rm \, GeV^{-1}}$ at 95\% confidence, WEP to $\Delta \gamma < 2.1 \times 10^{-15}$ at $1 \sigma$ confidence between photon energies of $25 {\rm \, keV}$ and $325 {\rm \, keV}$, and we demonstrate that these constraints are robust to how one models other contributions to the signal.</p> <p>We investigate Galileon modified gravity theories by studying the offsets between the centre of a galaxy and its host supermassive black hole (BH). We constrain the Galileon coupling to be $\Delta G / G_{\rm N} < 0.16$ at $1\sigma$ confidence for Galileons with crossover scale $r_{\rm C} \gtrsim H_0^{-1}$. Inspired by the aforementioned test of modified gravity, we study spatially offset BHs in the Horizon-AGN simulation and compare these to observations, finding i) the fraction of spatially offset BHs increases with cosmic time, ii) BHs live on prograde orbits in the plane of the galaxy with an orbital radius that decays with time but stalls near $z=0$, and iii) the magnitudes of offsets from the galaxy centres are substantially larger in the simulation than in observations.</p> <p>By cross-correlating dark matter density fields inferred from the spatial distribution of galaxies with gamma ray data from the \textit{Fermi} Large Area Telescope, marginalising over uncertainties in this reconstruction, small-scale structure and parameters describing astrophysical contributions to the observed gamma ray sky, we place constraints on the dark matter annihilation cross-sections and decay rates. We rule out the thermal relic cross-section or $s$-wave annihilation for all $m_\chi \lesssim 7 {\rm \, GeV}/c^2$ at 95\% confidence if the annihilation produces $Z$ bosons, gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma ray sky with the same spatial distribution as dark matter decay at $3.3\sigma$. Although this could be due to dark matter decay via these channels with a decay rate $\Gamma \approx 3 \times 10^{-28} {\rm \, s^{-1}}$, we find that a power-law spectrum of index $p=-2.75^{+0.71}_{-0.46}$ is preferred by the data.</p> <p>Finally, we outline a framework for assessing the reliability of the methods used in this thesis by constructing and testing more advanced models using cosmological hydrodynamical simulations. As a case study, we use the Horizon-AGN simulation to investigate warping of stellar disks and offsets between gas and stars within galaxies, which are powerful probes of screened fifth-forces.</p>
spellingShingle Cosmology
Astrophysics
Bartlett, DJ
Fundamental physics from galaxies
title Fundamental physics from galaxies
title_full Fundamental physics from galaxies
title_fullStr Fundamental physics from galaxies
title_full_unstemmed Fundamental physics from galaxies
title_short Fundamental physics from galaxies
title_sort fundamental physics from galaxies
topic Cosmology
Astrophysics
work_keys_str_mv AT bartlettdj fundamentalphysicsfromgalaxies