TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
Accurate topology is key when performing meaningful anatomical segmentations, however, it is often overlooked in traditional deep learning methods. In this work we propose TEDS-Net: a novel segmentation method that guarantees accurate topology. Our method is built upon a continuous diffeomorphic fra...
المؤلفون الرئيسيون: | Wyburd, MK, Jenkinson, M, Dinsdale, NK, Namburete, AIL |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Springer
2021
|
مواد مشابهة
-
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
حسب: Wyburd, MK, وآخرون
منشور في: (2024) -
Cortical plate segmentation using CNNs in 3D fetal ultrasound
حسب: Wyburd, MK, وآخرون
منشور في: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
حسب: Dinsdale, NK, وآخرون
منشور في: (2020) -
STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
حسب: Dinsdale, NK, وآخرون
منشور في: (2022) -
Preserving known anatomical topology in medical image segmentation using deep learning
حسب: Wyburd, MK
منشور في: (2022)