TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
Accurate topology is key when performing meaningful anatomical segmentations, however, it is often overlooked in traditional deep learning methods. In this work we propose TEDS-Net: a novel segmentation method that guarantees accurate topology. Our method is built upon a continuous diffeomorphic fra...
Автори: | Wyburd, MK, Jenkinson, M, Dinsdale, NK, Namburete, AIL |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Springer
2021
|
Схожі ресурси
Схожі ресурси
-
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
за авторством: Wyburd, MK, та інші
Опубліковано: (2024) -
Cortical plate segmentation using CNNs in 3D fetal ultrasound
за авторством: Wyburd, MK, та інші
Опубліковано: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
за авторством: Dinsdale, NK, та інші
Опубліковано: (2020) -
STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
за авторством: Dinsdale, NK, та інші
Опубліковано: (2022) -
Preserving known anatomical topology in medical image segmentation using deep learning
за авторством: Wyburd, MK
Опубліковано: (2022)