TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
Accurate topology is key when performing meaningful anatomical segmentations, however, it is often overlooked in traditional deep learning methods. In this work we propose TEDS-Net: a novel segmentation method that guarantees accurate topology. Our method is built upon a continuous diffeomorphic fra...
Những tác giả chính: | Wyburd, MK, Jenkinson, M, Dinsdale, NK, Namburete, AIL |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2021
|
Những quyển sách tương tự
-
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
Bằng: Wyburd, MK, et al.
Được phát hành: (2024) -
Cortical plate segmentation using CNNs in 3D fetal ultrasound
Bằng: Wyburd, MK, et al.
Được phát hành: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
Bằng: Dinsdale, NK, et al.
Được phát hành: (2020) -
STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
Bằng: Dinsdale, NK, et al.
Được phát hành: (2022) -
Preserving known anatomical topology in medical image segmentation using deep learning
Bằng: Wyburd, MK
Được phát hành: (2022)