Problems in extremal and probabilistic combinatorics: cubes, squares and permutations
<p>We begin by studying the possible intersection sizes of a $k$-dimensional linear subspace with the hypercube $\{0,1\}^n$. For a fixed $k$, the largest intersection size is $2^k$ and it was shown by Melo and Winter that the second largest intersection size is $2^{k-1} + 2^{k-2}$. We show tha...
Auteur principal: | Johnston, T |
---|---|
Autres auteurs: | Scott, A |
Format: | Thèse |
Langue: | English |
Publié: |
2021
|
Sujets: |
Documents similaires
-
A code for square permutations and convex permutominoes
par: Enrica Duchi
Publié: (2019-12-01) -
Combinatorics of diagrams of permutations
par: Joel Brewster Lewis, et autres
Publié: (2014-01-01) -
Absorptions in combinatorics
par: Cheng, Y
Publié: (2024) -
Consecutive patterns in restricted permutations and involutions
par: M. Barnabei, et autres
Publié: (2019-06-01) -
Associated Permutations of Complete Non-Ambiguous Trees
par: Daniel Chen, et autres
Publié: (2024-04-01)