Problems in extremal and probabilistic combinatorics: cubes, squares and permutations
<p>We begin by studying the possible intersection sizes of a $k$-dimensional linear subspace with the hypercube $\{0,1\}^n$. For a fixed $k$, the largest intersection size is $2^k$ and it was shown by Melo and Winter that the second largest intersection size is $2^{k-1} + 2^{k-2}$. We show tha...
Hlavní autor: | |
---|---|
Další autoři: | |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2021
|
Témata: |