Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
QMIX is a popular Q-learning algorithm for cooperative MARL in the centralised training and decentralised execution paradigm. In order to enable easy decentralisation, QMIX restricts the joint action Q-values it can represent to be a monotonic mixing of each agent’s utilities. However, this restrict...
Main Authors: | Rashid, T, Farquhar, G, Peng, B, Whiteson, S |
---|---|
Format: | Conference item |
Sprog: | English |
Udgivet: |
NeurIPS
2020
|
Lignende værker
-
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
af: Rashid, T, et al.
Udgivet: (2018) -
Monotonic value function factorisation for deep multi-agent reinforcement learning
af: Rashid, T, et al.
Udgivet: (2020) -
Exploration and value function factorisation in single and multi-agent reinforcement learning
af: Rashid, T
Udgivet: (2021) -
Stabilising experience replay for deep multi-agent reinforcement learning
af: Foerster, J, et al.
Udgivet: (2017) -
Bayesian action decoder for deep multi-agent reinforcement learning
af: Whiteson, S
Udgivet: (2019)