Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
QMIX is a popular Q-learning algorithm for cooperative MARL in the centralised training and decentralised execution paradigm. In order to enable easy decentralisation, QMIX restricts the joint action Q-values it can represent to be a monotonic mixing of each agent’s utilities. However, this restrict...
Päätekijät: | Rashid, T, Farquhar, G, Peng, B, Whiteson, S |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
NeurIPS
2020
|
Samankaltaisia teoksia
-
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
Tekijä: Rashid, T, et al.
Julkaistu: (2018) -
Monotonic value function factorisation for deep multi-agent reinforcement learning
Tekijä: Rashid, T, et al.
Julkaistu: (2020) -
Exploration and value function factorisation in single and multi-agent reinforcement learning
Tekijä: Rashid, T
Julkaistu: (2021) -
Stabilising experience replay for deep multi-agent reinforcement learning
Tekijä: Foerster, J, et al.
Julkaistu: (2017) -
Bayesian action decoder for deep multi-agent reinforcement learning
Tekijä: Whiteson, S
Julkaistu: (2019)