Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
QMIX is a popular Q-learning algorithm for cooperative MARL in the centralised training and decentralised execution paradigm. In order to enable easy decentralisation, QMIX restricts the joint action Q-values it can represent to be a monotonic mixing of each agent’s utilities. However, this restrict...
主要な著者: | Rashid, T, Farquhar, G, Peng, B, Whiteson, S |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
NeurIPS
2020
|
類似資料
-
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
著者:: Rashid, T, 等
出版事項: (2018) -
Monotonic value function factorisation for deep multi-agent reinforcement learning
著者:: Rashid, T, 等
出版事項: (2020) -
Exploration and value function factorisation in single and multi-agent reinforcement learning
著者:: Rashid, T
出版事項: (2021) -
Stabilising experience replay for deep multi-agent reinforcement learning
著者:: Foerster, J, 等
出版事項: (2017) -
Bayesian action decoder for deep multi-agent reinforcement learning
著者:: Whiteson, S
出版事項: (2019)