Large scale tensor regression using kernels and variational inference

We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology Kernel Fried Tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimen...

Deskribapen osoa

Xehetasun bibliografikoak
Egile Nagusiak: Hu, R, Nicholls, GK, Sejdinovic, D
Formatua: Journal article
Hizkuntza:English
Argitaratua: Springer Nature 2021
Deskribapena
Gaia:We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology Kernel Fried Tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimensional data. Our results show superior performance against LightGBM and Field Aware Factorization Machines (FFM), two algorithms with proven track records, widely used in largescale prediction. We also develop a variational inference framework for KFT which enables associating the predictions and forecasts with calibrated uncertainty estimates on several datasets.