Large scale tensor regression using kernels and variational inference
We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology Kernel Fried Tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimen...
मुख्य लेखकों: | Hu, R, Nicholls, GK, Sejdinovic, D |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
Springer Nature
2021
|
समान संसाधन
-
Large-scale kernel methods for independence testing
द्वारा: Zhang, Q, और अन्य
प्रकाशित: (2017) -
Large scale methods for kernels, causal inference and survival modelling
द्वारा: Hu, R
प्रकाशित: (2022) -
Causal inference via Kernel deviance measures
द्वारा: Mitrovic, J, और अन्य
प्रकाशित: (2018) -
Optimal kernel choice for large-scale two-sample tests
द्वारा: Gretton, A, और अन्य
प्रकाशित: (2012) -
DR-ABC: Approximate Bayesian computation with kernel-based distribution regression
द्वारा: Mitrovic, J, और अन्य
प्रकाशित: (2016)