Large scale tensor regression using kernels and variational inference
We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology Kernel Fried Tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimen...
主要な著者: | Hu, R, Nicholls, GK, Sejdinovic, D |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2021
|
類似資料
-
Large-scale kernel methods for independence testing
著者:: Zhang, Q, 等
出版事項: (2017) -
Large scale methods for kernels, causal inference and survival modelling
著者:: Hu, R
出版事項: (2022) -
Causal inference via Kernel deviance measures
著者:: Mitrovic, J, 等
出版事項: (2018) -
Optimal kernel choice for large-scale two-sample tests
著者:: Gretton, A, 等
出版事項: (2012) -
DR-ABC: Approximate Bayesian computation with kernel-based distribution regression
著者:: Mitrovic, J, 等
出版事項: (2016)