Large scale tensor regression using kernels and variational inference
We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology Kernel Fried Tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimen...
Asıl Yazarlar: | Hu, R, Nicholls, GK, Sejdinovic, D |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer Nature
2021
|
Benzer Materyaller
-
Large-scale kernel methods for independence testing
Yazar:: Zhang, Q, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Large scale methods for kernels, causal inference and survival modelling
Yazar:: Hu, R
Baskı/Yayın Bilgisi: (2022) -
Causal inference via Kernel deviance measures
Yazar:: Mitrovic, J, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Optimal kernel choice for large-scale two-sample tests
Yazar:: Gretton, A, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
DR-ABC: Approximate Bayesian computation with kernel-based distribution regression
Yazar:: Mitrovic, J, ve diğerleri
Baskı/Yayın Bilgisi: (2016)