Translating advances in our understanding of the genetics of diabetes into the clinic
The high worldwide prevalence of type 2 diabetes (T2D) is driving major efforts to understand the genetic basis of the disorder, with the expectation that this will increase our understanding of disease biology and consequently lead to improved patient stratification, disease prediction and the iden...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
S. Karger AG
2014
|
_version_ | 1797083663912927232 |
---|---|
author | Gardner, D Owen, K Gloyn, A |
author_facet | Gardner, D Owen, K Gloyn, A |
author_sort | Gardner, D |
collection | OXFORD |
description | The high worldwide prevalence of type 2 diabetes (T2D) is driving major efforts to understand the genetic basis of the disorder, with the expectation that this will increase our understanding of disease biology and consequently lead to improved patient stratification, disease prediction and the identification of novel therapeutic targets. Over the past 7 years, we have witnessed an unprecedented increase in our understanding of the genetic basis of T2D and its related traits with over 70 different regions of the genome being robustly associated with disease risk. Whilst these discoveries are encouraging, much of the clinical impact so far has been seen for monogenic forms of diabetes. However, with the advent of next-generation sequencing technologies, there is anticipation that this will not only improve access to diagnostic genetic testing for monogenic forms of diabetes, but it will also lead to the discovery of low-frequency variants with larger effect sizes contributing to T2D risk which could offer greater potential for clinical translation. |
first_indexed | 2024-03-07T01:44:37Z |
format | Journal article |
id | oxford-uuid:97fec3a2-fc31-4f67-b3fa-f2e67693ce8c |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T01:44:37Z |
publishDate | 2014 |
publisher | S. Karger AG |
record_format | dspace |
spelling | oxford-uuid:97fec3a2-fc31-4f67-b3fa-f2e67693ce8c2022-03-27T00:03:52ZTranslating advances in our understanding of the genetics of diabetes into the clinicJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:97fec3a2-fc31-4f67-b3fa-f2e67693ce8cEnglishSymplectic Elements at OxfordS. Karger AG2014Gardner, DOwen, KGloyn, AThe high worldwide prevalence of type 2 diabetes (T2D) is driving major efforts to understand the genetic basis of the disorder, with the expectation that this will increase our understanding of disease biology and consequently lead to improved patient stratification, disease prediction and the identification of novel therapeutic targets. Over the past 7 years, we have witnessed an unprecedented increase in our understanding of the genetic basis of T2D and its related traits with over 70 different regions of the genome being robustly associated with disease risk. Whilst these discoveries are encouraging, much of the clinical impact so far has been seen for monogenic forms of diabetes. However, with the advent of next-generation sequencing technologies, there is anticipation that this will not only improve access to diagnostic genetic testing for monogenic forms of diabetes, but it will also lead to the discovery of low-frequency variants with larger effect sizes contributing to T2D risk which could offer greater potential for clinical translation. |
spellingShingle | Gardner, D Owen, K Gloyn, A Translating advances in our understanding of the genetics of diabetes into the clinic |
title | Translating advances in our understanding of the genetics of diabetes into the clinic |
title_full | Translating advances in our understanding of the genetics of diabetes into the clinic |
title_fullStr | Translating advances in our understanding of the genetics of diabetes into the clinic |
title_full_unstemmed | Translating advances in our understanding of the genetics of diabetes into the clinic |
title_short | Translating advances in our understanding of the genetics of diabetes into the clinic |
title_sort | translating advances in our understanding of the genetics of diabetes into the clinic |
work_keys_str_mv | AT gardnerd translatingadvancesinourunderstandingofthegeneticsofdiabetesintotheclinic AT owenk translatingadvancesinourunderstandingofthegeneticsofdiabetesintotheclinic AT gloyna translatingadvancesinourunderstandingofthegeneticsofdiabetesintotheclinic |