DGPose: Deep Generative Models for Human Body Analysis
Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in...
Autori principali: | de Bem, R, Ghosh, A, Ajanthan, T, Miksik, O, Boukhayma, A, Siddharth, N, Torr, P |
---|---|
Natura: | Journal article |
Pubblicazione: |
Springer
2020
|
Documenti analoghi
Documenti analoghi
-
A semi-supervised deep generative model for human body analysis
di: De Bem, R, et al.
Pubblicazione: (2019) -
A conditional deep generative model of people in natural images
di: De Bem, R, et al.
Pubblicazione: (2019) -
3D hand shape and pose from images in the wild
di: Boukhayma, A, et al.
Pubblicazione: (2020) -
Cross-modal deep face normals with deactivable skip connections
di: Abrevaya, VF, et al.
Pubblicazione: (2020) -
Deep fully-connected part-based models for human pose estimation
di: De Bem, R, et al.
Pubblicazione: (2018)