DGPose: Deep Generative Models for Human Body Analysis
Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in...
Hlavní autoři: | de Bem, R, Ghosh, A, Ajanthan, T, Miksik, O, Boukhayma, A, Siddharth, N, Torr, P |
---|---|
Médium: | Journal article |
Vydáno: |
Springer
2020
|
Podobné jednotky
-
A semi-supervised deep generative model for human body analysis
Autor: De Bem, R, a další
Vydáno: (2019) -
A conditional deep generative model of people in natural images
Autor: De Bem, R, a další
Vydáno: (2019) -
3D hand shape and pose from images in the wild
Autor: Boukhayma, A, a další
Vydáno: (2020) -
Cross-modal deep face normals with deactivable skip connections
Autor: Abrevaya, VF, a další
Vydáno: (2020) -
Variational mixture-of-experts autoencoders for multi-modal deep generative models
Autor: Shi, Y, a další
Vydáno: (2019)