DGPose: Deep Generative Models for Human Body Analysis
Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in...
Asıl Yazarlar: | de Bem, R, Ghosh, A, Ajanthan, T, Miksik, O, Boukhayma, A, Siddharth, N, Torr, P |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
Springer
2020
|
Benzer Materyaller
-
A semi-supervised deep generative model for human body analysis
Yazar:: De Bem, R, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
A conditional deep generative model of people in natural images
Yazar:: De Bem, R, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
3D hand shape and pose from images in the wild
Yazar:: Boukhayma, A, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Cross-modal deep face normals with deactivable skip connections
Yazar:: Abrevaya, VF, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Variational mixture-of-experts autoencoders for multi-modal deep generative models
Yazar:: Shi, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2019)