Expander graph propagation
Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks is known to be challenging: it often requires computing node features that are mindful of both local interactions in their neighbourhood and the global context of the graph structure. GNN architectures that navi...
Hlavní autoři: | Deac, A, Lackenby, M, Veličković, P |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Journal of Machine Learning Research
2022
|
Podobné jednotky
-
Expanders, rank and graphs of groups
Autor: Lackenby, M
Vydáno: (2004) -
How does over-squashing affect the power of GNNs?
Autor: Di Giovanni, F, a další
Vydáno: (2024) -
Expander graphs
Autor: Kahale, Nabil
Vydáno: (2005) -
Parameterized counting and Cayley graph expanders
Autor: Peyerimhoff, N, a další
Vydáno: (2023) -
Models for information propagation on graphs
Autor: Oliver R. A. Dunbar, a další