Expander graph propagation
Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks is known to be challenging: it often requires computing node features that are mindful of both local interactions in their neighbourhood and the global context of the graph structure. GNN architectures that navi...
Κύριοι συγγραφείς: | Deac, A, Lackenby, M, Veličković, P |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Journal of Machine Learning Research
2022
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Expanders, rank and graphs of groups
ανά: Lackenby, M
Έκδοση: (2004) -
How does over-squashing affect the power of GNNs?
ανά: Di Giovanni, F, κ.ά.
Έκδοση: (2024) -
Expander graphs
ανά: Kahale, Nabil
Έκδοση: (2005) -
Parameterized counting and Cayley graph expanders
ανά: Peyerimhoff, N, κ.ά.
Έκδοση: (2023) -
Models for information propagation on graphs
ανά: Oliver R. A. Dunbar, κ.ά.