Expander graph propagation
Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks is known to be challenging: it often requires computing node features that are mindful of both local interactions in their neighbourhood and the global context of the graph structure. GNN architectures that navi...
Главные авторы: | Deac, A, Lackenby, M, Veličković, P |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Journal of Machine Learning Research
2022
|
Схожие документы
-
Expanders, rank and graphs of groups
по: Lackenby, M
Опубликовано: (2004) -
How does over-squashing affect the power of GNNs?
по: Di Giovanni, F, и др.
Опубликовано: (2024) -
Expander graphs
по: Kahale, Nabil
Опубликовано: (2005) -
Parameterized counting and Cayley graph expanders
по: Peyerimhoff, N, и др.
Опубликовано: (2023) -
Models for information propagation on graphs
по: Oliver R. A. Dunbar, и др.