The scatter in the galaxy-halo connection: a machine learning analysis
We apply machine learning (ML), a powerful method for uncovering complex correlations in high-dimensional data, to the galaxy-halo connection of cosmological hydrodynamical simulations. The mapping between galaxy and halo variables is stochastic in the absence of perfect information, but conventiona...
Auteurs principaux: | Stiskalek, R, Bartlett, DJ, Desmond, H, Anbajagane, D |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Oxford University Press
2022
|
Documents similaires
-
Baryonic Imprints on DM Halos: the concentration-mass relation and its dependence on halo and galaxy properties
par: Mufan Shao, et autres
Publié: (2024-04-01) -
On the galaxy–halo connection in the EAGLE simulation
par: Desmond, H, et autres
Publié: (2017) -
Revealing the Galaxy–Halo Connection through Machine Learning
par: Ryan Hausen, et autres
Publié: (2023-01-01) -
Evaluating the reconstruction of individual haloes in constrained cosmological simulations
par: Stiskalek, R, et autres
Publié: (2023) -
Revealing the galaxy–halo connection in IllustrisTNG
par: Bose, Sownak, et autres
Publié: (2022)