The scatter in the galaxy-halo connection: a machine learning analysis
We apply machine learning (ML), a powerful method for uncovering complex correlations in high-dimensional data, to the galaxy-halo connection of cosmological hydrodynamical simulations. The mapping between galaxy and halo variables is stochastic in the absence of perfect information, but conventiona...
Главные авторы: | Stiskalek, R, Bartlett, DJ, Desmond, H, Anbajagane, D |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Oxford University Press
2022
|
Схожие документы
-
Baryonic Imprints on DM Halos: the concentration-mass relation and its dependence on halo and galaxy properties
по: Mufan Shao, и др.
Опубликовано: (2024-04-01) -
On the galaxy–halo connection in the EAGLE simulation
по: Desmond, H, и др.
Опубликовано: (2017) -
Revealing the Galaxy–Halo Connection through Machine Learning
по: Ryan Hausen, и др.
Опубликовано: (2023-01-01) -
Evaluating the reconstruction of individual haloes in constrained cosmological simulations
по: Stiskalek, R, и др.
Опубликовано: (2023) -
Revealing the galaxy–halo connection in IllustrisTNG
по: Bose, Sownak, и др.
Опубликовано: (2022)