The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ~ 1
We present the stellar mass ($M_{*}$), and K-corrected $K$-band absolute magnitude ($M_{K}$) Tully-Fisher relations (TFRs) for sub-samples of the 584 galaxies spatially resolved in H$\alpha$ emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KR...
Κύριοι συγγραφείς: | , , , , , , , , , , , , , |
---|---|
Μορφή: | Journal article |
Έκδοση: |
Oxford University Press
2016
|
_version_ | 1826286633475899392 |
---|---|
author | Tiley, A Stott, J Swinbank, A Bureau, M Harrison, C Bower, R Johnson, H Bunker, A Jarvis, M Magdis, G Sharples, R Smail, I Sobral, D Best, P |
author_facet | Tiley, A Stott, J Swinbank, A Bureau, M Harrison, C Bower, R Johnson, H Bunker, A Jarvis, M Magdis, G Sharples, R Smail, I Sobral, D Best, P |
author_sort | Tiley, A |
collection | OXFORD |
description | We present the stellar mass ($M_{*}$), and K-corrected $K$-band absolute magnitude ($M_{K}$) Tully-Fisher relations (TFRs) for sub-samples of the 584 galaxies spatially resolved in H$\alpha$ emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, $V_{80}$ at a radius equal to the major axis of an ellipse containing 80% of the total integrated H$\alpha$ flux. The large sample size of KROSS allowed us to select 210 galaxies with well measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion $V_{80}/\sigma > 3$, where $\sigma$ is the flux weighted average velocity dispersion. We find the $M_{K}$ and $M_{*}$ TFRs for this sub-sample to be $M_{K} / \rm{mag}= (-7.3 \pm 0.9) \times [(\log(V_{80}/\rm{km\ s^{-1}})-2.25]- 23.4 \pm 0.2$ , and $\log(M_{*} / M_{\odot})= (4.7 \pm 0.4) \times [(\log(V_{80}/\rm{km\ s^{-1}}) - 2.25] + 10.0 \pm 0.3$, respectively. We find an evolution of the $M_{*}$ TFR zero-point of $-0.41 \pm 0.08$ dex over the last $\sim $8 billion years. However, we measure no evolution in the $M_{K}$ TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at $z \sim 1$ than the present day, yet emitted the same amounts of $K$-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities. |
first_indexed | 2024-03-07T01:46:38Z |
format | Journal article |
id | oxford-uuid:98a3181f-33f8-44e1-b354-b8680c4c5473 |
institution | University of Oxford |
last_indexed | 2024-03-07T01:46:38Z |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | dspace |
spelling | oxford-uuid:98a3181f-33f8-44e1-b354-b8680c4c54732022-03-27T00:08:28ZThe KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ~ 1Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:98a3181f-33f8-44e1-b354-b8680c4c5473Symplectic Elements at OxfordOxford University Press2016Tiley, AStott, JSwinbank, ABureau, MHarrison, CBower, RJohnson, HBunker, AJarvis, MMagdis, GSharples, RSmail, ISobral, DBest, PWe present the stellar mass ($M_{*}$), and K-corrected $K$-band absolute magnitude ($M_{K}$) Tully-Fisher relations (TFRs) for sub-samples of the 584 galaxies spatially resolved in H$\alpha$ emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, $V_{80}$ at a radius equal to the major axis of an ellipse containing 80% of the total integrated H$\alpha$ flux. The large sample size of KROSS allowed us to select 210 galaxies with well measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion $V_{80}/\sigma > 3$, where $\sigma$ is the flux weighted average velocity dispersion. We find the $M_{K}$ and $M_{*}$ TFRs for this sub-sample to be $M_{K} / \rm{mag}= (-7.3 \pm 0.9) \times [(\log(V_{80}/\rm{km\ s^{-1}})-2.25]- 23.4 \pm 0.2$ , and $\log(M_{*} / M_{\odot})= (4.7 \pm 0.4) \times [(\log(V_{80}/\rm{km\ s^{-1}}) - 2.25] + 10.0 \pm 0.3$, respectively. We find an evolution of the $M_{*}$ TFR zero-point of $-0.41 \pm 0.08$ dex over the last $\sim $8 billion years. However, we measure no evolution in the $M_{K}$ TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at $z \sim 1$ than the present day, yet emitted the same amounts of $K$-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities. |
spellingShingle | Tiley, A Stott, J Swinbank, A Bureau, M Harrison, C Bower, R Johnson, H Bunker, A Jarvis, M Magdis, G Sharples, R Smail, I Sobral, D Best, P The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ~ 1 |
title | The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher
relation at z ~ 1 |
title_full | The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher
relation at z ~ 1 |
title_fullStr | The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher
relation at z ~ 1 |
title_full_unstemmed | The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher
relation at z ~ 1 |
title_short | The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher
relation at z ~ 1 |
title_sort | kmos redshift one spectroscopic survey kross the tully fisher relation at z 1 |
work_keys_str_mv | AT tileya thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT stottj thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT swinbanka thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bureaum thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT harrisonc thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bowerr thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT johnsonh thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bunkera thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT jarvism thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT magdisg thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT sharplesr thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT smaili thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT sobrald thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bestp thekmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT tileya kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT stottj kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT swinbanka kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bureaum kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT harrisonc kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bowerr kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT johnsonh kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bunkera kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT jarvism kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT magdisg kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT sharplesr kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT smaili kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT sobrald kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 AT bestp kmosredshiftonespectroscopicsurveykrossthetullyfisherrelationatz1 |