Quantitative isoperimetry à la Levy-Gromov

On a Riemannian manifold with a positive lower bound on the Ricci tensor, the distance of isoperimetric sets from geodesic balls is quantitatively controlled in terms of the gap between the isoperimetric profile of the manifold and that of a round sphere of suitable radius. The deficit between the d...

Descrición completa

Detalles Bibliográficos
Main Authors: Cavalletti, F, Maggi, F, Mondino, A
Formato: Journal article
Publicado: Wiley 2018
Descripción
Summary:On a Riemannian manifold with a positive lower bound on the Ricci tensor, the distance of isoperimetric sets from geodesic balls is quantitatively controlled in terms of the gap between the isoperimetric profile of the manifold and that of a round sphere of suitable radius. The deficit between the diameters of the manifold and of the corresponding sphere is likewise bounded. These results are actually obtained in the more general context of (possibly nonsmooth) metric measure spaces with curvature‐dimension conditions through a quantitative analysis of the transport rays decompositions obtained by the localization method.