Single precision in weather forecasting models: An evaluation with the IFS
Earth’s climate is a nonlinear dynamical system with scale-dependent Lyapunov exponents. As such, an important theoretical question for modeling weather and climate is how much real information is carried in a model’s physical variables as a function of scale and variable type. Answering this questi...
Päätekijät: | Váňa, F, Düben, P, Lang, S, Palmer, T, Leutbecher, M, Salmond, D, Carver, G |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
American Meteorological Society
2017
|
Samankaltaisia teoksia
-
Scale-selective precision for weather and climate forecasting
Tekijä: Chantry, M, et al.
Julkaistu: (2019) -
A study of reduced numerical precision to make superparameterization more competitive using a hardware emulator in the OpenIFS model
Tekijä: Düben, P, et al.
Julkaistu: (2017) -
Improving weather forecast skill through reduced precision data assimilation
Tekijä: Hatfield, S, et al.
Julkaistu: (2017) -
A study of reduced numerical precision to make superparameterization more competitive using a hardware emulator in the OpenIFS model
Tekijä: Peter D. Düben, et al.
Julkaistu: (2017-03-01) -
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Tekijä: L. Olivetti, et al.
Julkaistu: (2024-11-01)