Monitoring patient vital-sign deterioration trajectories using Bayesian inference

Vital signs recorded at the hospital bedside manually by clinical staff are key indicators of patient physiology and may be used to track patient deterioration. The low frequency of vital-sign observations by clinical staff (every 4, 8 or 12 hours) makes it difficult to determine the underlying dist...

ver descrição completa

Detalhes bibliográficos
Main Authors: Khalid, S, Clifton, D, Tarassenko, L
Formato: Conference item
Publicado em: IEEE 2011
_version_ 1826286765580746752
author Khalid, S
Clifton, D
Tarassenko, L
author_facet Khalid, S
Clifton, D
Tarassenko, L
author_sort Khalid, S
collection OXFORD
description Vital signs recorded at the hospital bedside manually by clinical staff are key indicators of patient physiology and may be used to track patient deterioration. The low frequency of vital-sign observations by clinical staff (every 4, 8 or 12 hours) makes it difficult to determine the underlying distribution for each vital sign. In this paper we demonstrate how a Bayesian approach may be used to estimate the unknown parameters of vital sign data.
first_indexed 2024-03-07T01:48:35Z
format Conference item
id oxford-uuid:9947c878-1f04-4a64-95f0-a8951433ed99
institution University of Oxford
last_indexed 2024-03-07T01:48:35Z
publishDate 2011
publisher IEEE
record_format dspace
spelling oxford-uuid:9947c878-1f04-4a64-95f0-a8951433ed992022-03-27T00:13:08ZMonitoring patient vital-sign deterioration trajectories using Bayesian inferenceConference itemhttp://purl.org/coar/resource_type/c_5794uuid:9947c878-1f04-4a64-95f0-a8951433ed99Symplectic Elements at OxfordIEEE2011Khalid, SClifton, DTarassenko, LVital signs recorded at the hospital bedside manually by clinical staff are key indicators of patient physiology and may be used to track patient deterioration. The low frequency of vital-sign observations by clinical staff (every 4, 8 or 12 hours) makes it difficult to determine the underlying distribution for each vital sign. In this paper we demonstrate how a Bayesian approach may be used to estimate the unknown parameters of vital sign data.
spellingShingle Khalid, S
Clifton, D
Tarassenko, L
Monitoring patient vital-sign deterioration trajectories using Bayesian inference
title Monitoring patient vital-sign deterioration trajectories using Bayesian inference
title_full Monitoring patient vital-sign deterioration trajectories using Bayesian inference
title_fullStr Monitoring patient vital-sign deterioration trajectories using Bayesian inference
title_full_unstemmed Monitoring patient vital-sign deterioration trajectories using Bayesian inference
title_short Monitoring patient vital-sign deterioration trajectories using Bayesian inference
title_sort monitoring patient vital sign deterioration trajectories using bayesian inference
work_keys_str_mv AT khalids monitoringpatientvitalsigndeteriorationtrajectoriesusingbayesianinference
AT cliftond monitoringpatientvitalsigndeteriorationtrajectoriesusingbayesianinference
AT tarassenkol monitoringpatientvitalsigndeteriorationtrajectoriesusingbayesianinference