Bounds in Cohen’s idempotent theorem
Suppose that G is a finite Abelian group and write W(G) for the set of cosets of subgroups of G. We show that if f:G→Z satisfies the estimate ∥f∥A(G)≤M with respect to the Fourier algebra norm, then there is some z:W(G)→Z such that f=∑W∈W(G)z(W)1W and ∥z∥ℓ1(W(G))=exp(M4+o(1)).
Päätekijä: | Sanders, T |
---|---|
Aineistotyyppi: | Journal article |
Julkaistu: |
Springer Verlag
2020
|
Samankaltaisia teoksia
-
Amitsur's theorem, semicentral idempotents, and additively idempotent semirings
Tekijä: Rachev Martin, et al.
Julkaistu: (2024-03-01) -
A Quantitative Version of the Non-Abelian Idempotent Theorem
Tekijä: Sanders, T
Julkaistu: (2011) -
A quantitative version of the idempotent theorem in harmonic analysis
Tekijä: Green, B, et al.
Julkaistu: (2006) -
Central Sets Theorem Near of an Idempotent in Wap-Compactification
Tekijä: Ali Pashapournia, et al.
Julkaistu: (2023-01-01) -
Idempotent Triangular Matrices over Additively Idempotent Semirings: Decompositions into Products of Semicentral Idempotents
Tekijä: Dimitrinka Vladeva
Julkaistu: (2025-02-01)