Bounds in Cohen’s idempotent theorem
Suppose that G is a finite Abelian group and write W(G) for the set of cosets of subgroups of G. We show that if f:G→Z satisfies the estimate ∥f∥A(G)≤M with respect to the Fourier algebra norm, then there is some z:W(G)→Z such that f=∑W∈W(G)z(W)1W and ∥z∥ℓ1(W(G))=exp(M4+o(1)).
Huvudupphovsman: | Sanders, T |
---|---|
Materialtyp: | Journal article |
Publicerad: |
Springer Verlag
2020
|
Liknande verk
-
Amitsur's theorem, semicentral idempotents, and additively idempotent semirings
av: Rachev Martin, et al.
Publicerad: (2024-03-01) -
A Quantitative Version of the Non-Abelian Idempotent Theorem
av: Sanders, T
Publicerad: (2011) -
A quantitative version of the idempotent theorem in harmonic analysis
av: Green, B, et al.
Publicerad: (2006) -
Central Sets Theorem Near of an Idempotent in Wap-Compactification
av: Ali Pashapournia, et al.
Publicerad: (2023-01-01) -
Idempotent Triangular Matrices over Additively Idempotent Semirings: Decompositions into Products of Semicentral Idempotents
av: Dimitrinka Vladeva
Publicerad: (2025-02-01)