Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications.

The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process o...

Full description

Bibliographic Details
Main Authors: Lee, S, Lee, J, Ko, W, Cha, S, Sohn, J, Kim, J, Park, J, Park, Y, Hong, J
Format: Journal article
Language:English
Published: 2013
Description
Summary:The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion sensors.