The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients.
The killing of natural killer (NK) cells is regulated by activating and inhibitory NK receptors that recognize mainly class I major histocompatibility complex (MHC) proteins. In transporter associated with antigen processing (TAP2)-deficient patients, killing of autologous cells by NK cells is there...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2004
|
_version_ | 1826287029468528640 |
---|---|
author | Markel, G Mussaffi, H Ling, K Salio, M Gadola, S Steuer, G Blau, H Achdout, H de Miguel, M Gonen-Gross, T Hanna, J Arnon, T Qimron, U Volovitz, I Eisenbach, L Blumberg, R Porgador, A Cerundolo, V Mandelboim, O |
author_facet | Markel, G Mussaffi, H Ling, K Salio, M Gadola, S Steuer, G Blau, H Achdout, H de Miguel, M Gonen-Gross, T Hanna, J Arnon, T Qimron, U Volovitz, I Eisenbach, L Blumberg, R Porgador, A Cerundolo, V Mandelboim, O |
author_sort | Markel, G |
collection | OXFORD |
description | The killing of natural killer (NK) cells is regulated by activating and inhibitory NK receptors that recognize mainly class I major histocompatibility complex (MHC) proteins. In transporter associated with antigen processing (TAP2)-deficient patients, killing of autologous cells by NK cells is therefore expected. However, none of the TAP2-deficient patients studied so far have suffered from immediate NK-mediated autoimmune manifestations. We have previously demonstrated the existence of a novel class I MHC-independent inhibitory mechanism of NK cell cytotoxicity mediated by the homophilic carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) interactions. Here, we identified 3 new siblings suffering from TAP2 deficiency. NK cells derived from these patients express unusually high levels of the various killer cell inhibitory receptors (KIRs) and the CEACAM1 protein. Importantly, the patients' NK cells use the CEACAM1 protein to inhibit the killing of tumor and autologous cells. Finally, we show that the function of the main NK lysis receptor, NKp46, is impaired in these patients. These results indicate that NK cells in TAP2-deficient patients have developed unique mechanisms to reduce NK killing activity and to compensate for the lack of class I MHC-mediated inhibition. These mechanisms prevent the attack of self-cells by the autologous NK cells and explain why TAP2-deficient patients do not suffer from autoimmune manifestations in early stages of life. |
first_indexed | 2024-03-07T01:52:30Z |
format | Journal article |
id | oxford-uuid:9a9a5c9e-5218-41e1-ade3-0c88b7068135 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T01:52:30Z |
publishDate | 2004 |
record_format | dspace |
spelling | oxford-uuid:9a9a5c9e-5218-41e1-ade3-0c88b70681352022-03-27T00:22:31ZThe mechanisms controlling NK cell autoreactivity in TAP2-deficient patients.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:9a9a5c9e-5218-41e1-ade3-0c88b7068135EnglishSymplectic Elements at Oxford2004Markel, GMussaffi, HLing, KSalio, MGadola, SSteuer, GBlau, HAchdout, Hde Miguel, MGonen-Gross, THanna, JArnon, TQimron, UVolovitz, IEisenbach, LBlumberg, RPorgador, ACerundolo, VMandelboim, OThe killing of natural killer (NK) cells is regulated by activating and inhibitory NK receptors that recognize mainly class I major histocompatibility complex (MHC) proteins. In transporter associated with antigen processing (TAP2)-deficient patients, killing of autologous cells by NK cells is therefore expected. However, none of the TAP2-deficient patients studied so far have suffered from immediate NK-mediated autoimmune manifestations. We have previously demonstrated the existence of a novel class I MHC-independent inhibitory mechanism of NK cell cytotoxicity mediated by the homophilic carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) interactions. Here, we identified 3 new siblings suffering from TAP2 deficiency. NK cells derived from these patients express unusually high levels of the various killer cell inhibitory receptors (KIRs) and the CEACAM1 protein. Importantly, the patients' NK cells use the CEACAM1 protein to inhibit the killing of tumor and autologous cells. Finally, we show that the function of the main NK lysis receptor, NKp46, is impaired in these patients. These results indicate that NK cells in TAP2-deficient patients have developed unique mechanisms to reduce NK killing activity and to compensate for the lack of class I MHC-mediated inhibition. These mechanisms prevent the attack of self-cells by the autologous NK cells and explain why TAP2-deficient patients do not suffer from autoimmune manifestations in early stages of life. |
spellingShingle | Markel, G Mussaffi, H Ling, K Salio, M Gadola, S Steuer, G Blau, H Achdout, H de Miguel, M Gonen-Gross, T Hanna, J Arnon, T Qimron, U Volovitz, I Eisenbach, L Blumberg, R Porgador, A Cerundolo, V Mandelboim, O The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. |
title | The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. |
title_full | The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. |
title_fullStr | The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. |
title_full_unstemmed | The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. |
title_short | The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. |
title_sort | mechanisms controlling nk cell autoreactivity in tap2 deficient patients |
work_keys_str_mv | AT markelg themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT mussaffih themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT lingk themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT saliom themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT gadolas themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT steuerg themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT blauh themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT achdouth themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT demiguelm themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT gonengrosst themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT hannaj themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT arnont themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT qimronu themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT volovitzi themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT eisenbachl themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT blumbergr themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT porgadora themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT cerundolov themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT mandelboimo themechanismscontrollingnkcellautoreactivityintap2deficientpatients AT markelg mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT mussaffih mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT lingk mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT saliom mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT gadolas mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT steuerg mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT blauh mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT achdouth mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT demiguelm mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT gonengrosst mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT hannaj mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT arnont mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT qimronu mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT volovitzi mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT eisenbachl mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT blumbergr mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT porgadora mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT cerundolov mechanismscontrollingnkcellautoreactivityintap2deficientpatients AT mandelboimo mechanismscontrollingnkcellautoreactivityintap2deficientpatients |