Uncertainty and filtering of hidden Markov models in discrete time

We consider the problem of filtering an unseen Markov chain from noisy observations, in the presence of uncertainty regarding the parameters of the processes involved. Using the theory of nonlinear expectations, we describe the uncertainty in terms of a penalty function, which can be propagated forw...

Description complète

Détails bibliographiques
Auteur principal: Cohen, SN
Format: Journal article
Langue:English
Publié: SpringerOpen 2020

Documents similaires